

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lange of the applicatio customer's to unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the

FAIRCHILD

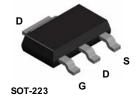
SEMICONDUCTOR®

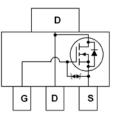
FDT86113LZ

N-Channel PowerTrench[®] MOSFET 100 V, 3.3 A, 100 m Ω

Features

- Max $r_{DS(on)}$ = 100 m Ω at V_{GS} = 10 V, I_D = 3.3 A
- Max $r_{DS(on)}$ = 145 m Ω at V_{GS} = 4.5 V, I_D = 2.7 A
- High performance trench technology for extremely low r_{DS(on)}
- High power and current handling capability in a widely used surface mount package
- HBM ESD protection level > 3 KV typical (Note 4)
- 100% UIL tested
- RoHS Compliant




General Description

This N-Channel logic Level MOSFETs are produced using Fairchild Semiconductor's advanced Power Trench[®] process that has been special tailored to minimize the on-state resistance and yet maintain superior switching performance. G-S zener has been added to enhance ESD voltage level.

Application

DC - DC Switch

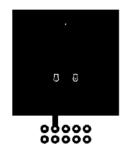
MOSFET Maximum Ratings T_C = 25 °C unless otherwise noted

Symbol	Parameter			Ratings	Units	
V _{DS}	Drain to Source Voltage			100	V	
V _{GS}	Gate to Source Voltage			±20	V	
-	Drain Current -Continuous			3.3		
D	-Pulsed			12	— A	
E _{AS}	Single Pulse Avalanche Energy		(Note 3)	9	mJ	
P _D	Power Dissipation	T _A = 25 °C	(Note 1a)	2.2	- w	
	Power Dissipation	T _A = 25 °C	(Note 1b)	1.0		
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to +150	°C	

Thermal Characteristics

$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	12	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Note 1	a) 55	C/VV

Package Marking and Ordering Information


Device Marking	Device	Package	Reel Size	Tape Width	Quantity
86113LZ	FDT86113LZ	SOT-223	13 "	12 mm	2500 units

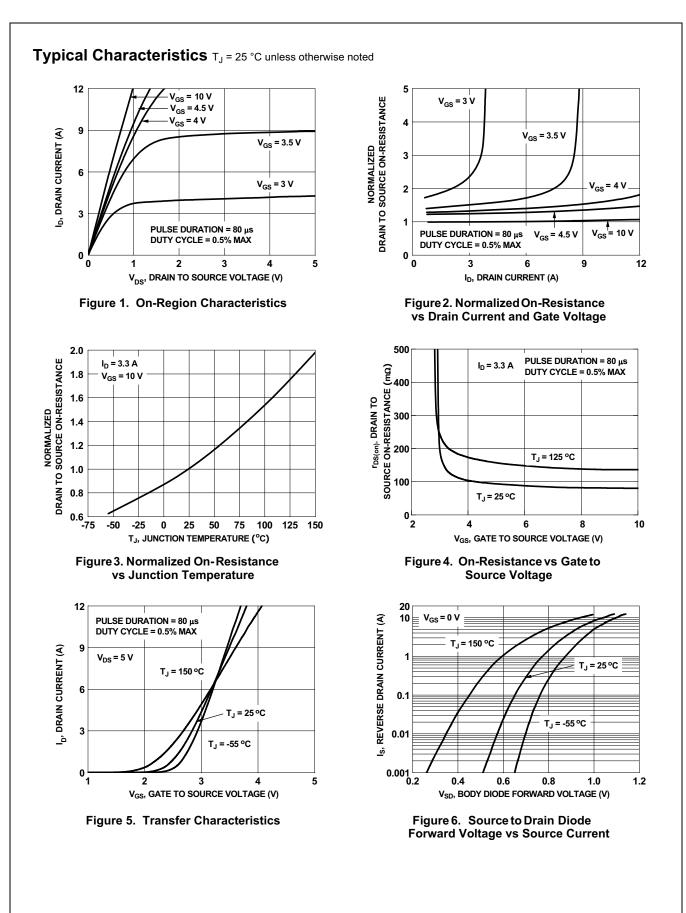
March 2011

FDT86113LZ N
13LZ N-Ch
N-Channel PowerTrenc
verTrench [®]
[®] MOSFET
1

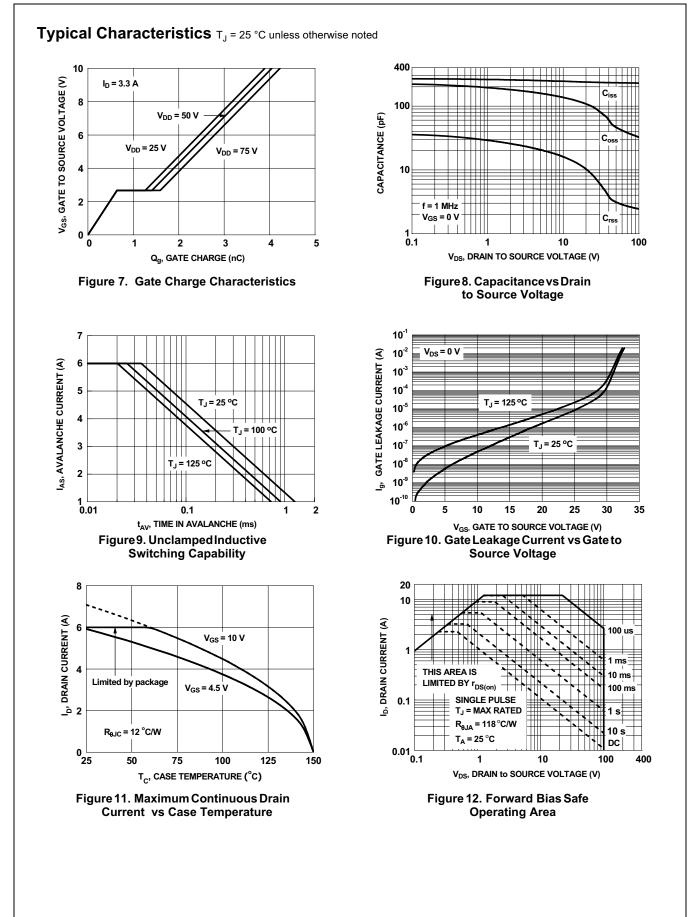
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units	
Off Char	acteristics						
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = 250 μA, V _{GS} = 0 V	100			V	
ΔBV _{DSS} ΔT _J	Breakdown Voltage Temperature Coefficient	I_D = 250 µA, referenced to 25 °C		71		mV/°C	
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 80 V, V _{GS} = 0 V			1	μA	
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$			±10	μA	
On Chara	acteristics (Note 2)						
V _{GS(th)}	Gate to Source Threshold Voltage	V _{GS} = V _{DS} , I _D = 250 μA	1.0	1.7	2.5	V	
$\Delta V_{GS(th)} \Delta T_J$	Gate to Source Threshold Voltage Temperature Coefficient	I_D = 250 µA, referenced to 25 °C		-5		mV/°C	
r _{DS(on)}		V _{GS} = 10 V, I _D = 3.3 A		75	100		
	Static Drain to Source On Resistance	V _{GS} = 4.5 V, I _D = 2.7 A		95	145	mΩ	
		V _{GS} = 10 V, I _D = 3.3 A, T _J = 125 °C		140	189	- 11122	
9 _{FS}	Forward Transconductance	V _{DS} = 10 V, I _D = 3.3 A		8		S	
-	Characteristics					1	
C _{iss}	Input Capacitance			234	315	pF	
C _{oss}	Output Capacitance	= f = 1 MHz		46	65	pF	
C _{rss}	Reverse Transfer Capacitance			3.1	5	pF	
Switchin	g Characteristics						
t _{d(on)}	Turn-On Delay Time			3.8	10	ns	
t _r	Rise Time	V _{DD} = 50 V, I _D = 3.3 A,		1.3	10	ns	
t _{d(off)}	Turn-Off Delay Time	V _{GS} = 10 V, R _{GEN} = 6 Ω		10	20	ns	
t _f	Fall Time			1.5	10	ns	
Q _q	Total Gate Charge	V _{GS} = 0 V to 10 V		4.1	6.8	nC	
0	Total Gate Charge	$V_{GS} = 0 V \text{ to } 5 V V_{DD} = 50 V,$		2.3	3.9	nC	
α	Gate to Source Gate Charge	I _D = 3.3 A		0.68		nC	
0	Cate to Course Cate Charge			0.85		nC	
Q _{gs}	Gate to Drain "Miller" Charge			0.00			
Q _{gs} Q _{gd}	-			0.00			
Q _{gs} Q _{gd} Drain-So	Gate to Drain "Miller" Charge	V _{GS} = 0 V, I _S = 3.3 A (Note 2)		0.86	1.3		
Drain-So	Gate to Drain "Miller" Charge	00 0			1.3	V	
Q _{gs} Q _{gd}	Gate to Drain "Miller" Charge			0.86	-	V	

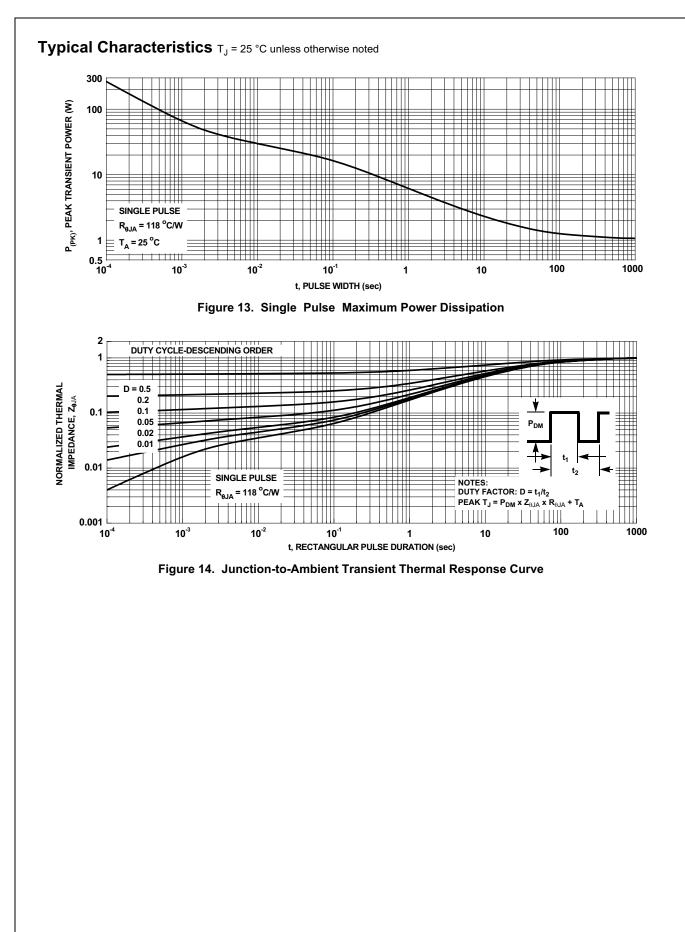
Notes: 1. R_{6JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{6JC} is guaranteed by design while R_{6JA} is determined by the user's board design.

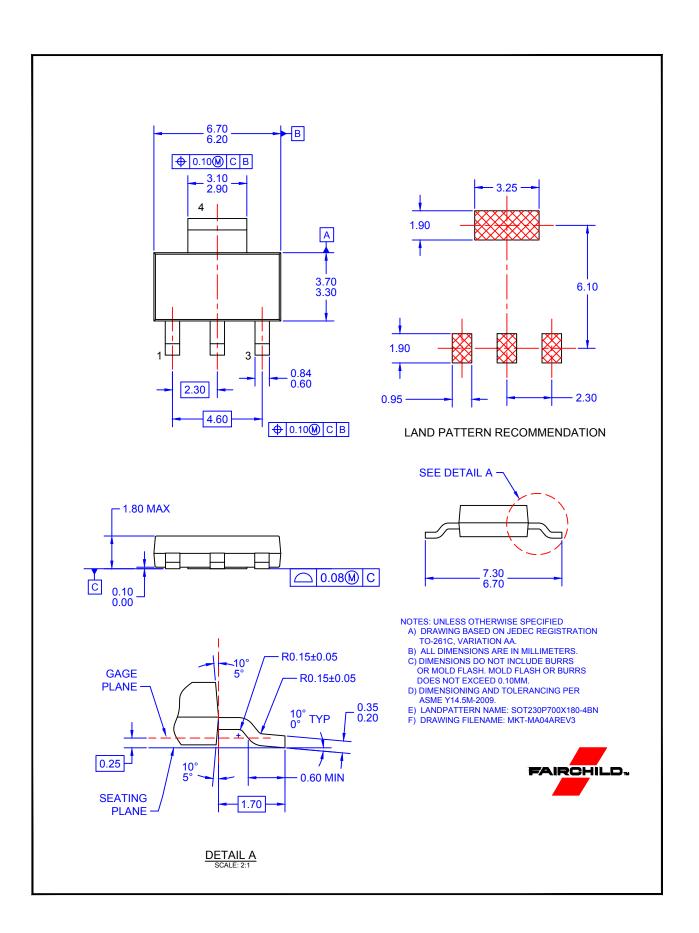
a) 55 °C/W when mounted on a 1 in² pad of 2 oz copper


٥

b) 118 °C/W when mounted on a minimum pad of 2 oz copper


2. Pulse Test: Pulse Width < 300 $\mu s,$ Duty cycle < 2.0%.


3. Starting $T_J = 25^{\circ}C$, L = 0.3 mH, $I_{AS} = 8$ A, $V_{DD} = 90$ V, $V_{GS} = 10$ V.


4. The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC